CSE 417T: Introduction to Machine Learning

Lecture 10: Overfitting

Henry Chai
09/27/18
Recall

- Decide on a transformation $\Phi: \mathcal{X} \rightarrow \mathcal{Z}$

- Convert $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ to $\tilde{\mathcal{D}} = \{(\Phi(x_1) = \frac{x_1}{z_1}, y_1), \ldots, (\Phi(x_n) = \frac{x_n}{z_n}, y_n)\}$

- Fit a linear model using $\tilde{\mathcal{D}}, \tilde{g}(\tilde{z})$

- Return the corresponding predictor in the original space: $g(\tilde{x}) = \tilde{g}(\Phi(\tilde{x}))$
Nonlinear Transforms for Approving Credit

- Input: \(x_1 = \text{age}, x_2 = \text{income}, x_3 = \text{credit score} \)

- How close is this person to some optimal age, \(a^* \)?

- What is this person’s income scaled by age?

- Having a very low credit score is more significant than having a very high credit score.

- Transformation: \(\Phi(\vec{x}) = [x_1, x_2, x_3, |a^* - x_1|, \frac{x_2}{x_1}, \sqrt{x_3}] \)
Linear Models
Nonlinear Models?
Tradeoffs

<table>
<thead>
<tr>
<th></th>
<th>Low-Dimensional Input Space</th>
<th>High-Dimensional Input Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{in}</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Generalization</td>
<td>Good</td>
<td>Bad</td>
</tr>
</tbody>
</table>

Overfitting
Overfitting

- Overfitting is fitting the training data “more than is warranted”
- Fitting noise rather than signal
\begin{itemize}
 \item $\mathcal{X} = \mathbb{R}$, $\mathcal{Y} = \mathbb{R}$ and $n = 20$
 \item f is a 10^{th}-order polynomial in x with additive Gaussian noise
 \begin{equation*}
 y = \sum_{d=0}^{10} a_d x^d + \epsilon \quad \text{where} \quad \epsilon \sim N(0, \sigma^2)
 \end{equation*}
 \item $\mathcal{H}_2 = 2^{\text{nd}}$-order polynomials
 \begin{itemize}
 \item $\tilde{z} = \Phi_2(x) = [x, x^2]$
 \end{itemize}
 \item $\mathcal{H}_{10} = 10^{\text{th}}$-order polynomials
 \begin{itemize}
 \item $\tilde{z} = \Phi_{10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$
 \end{itemize}
\end{itemize}
Noisy Targets

- 10-d target function with additive Gaussian noise

\[y = f(x) + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2) \]

- \(\mathcal{H}_2 = 2^{nd}\)-order polynomial
- \(\mathcal{H}_{10} = 10^{th}\)-order polynomial
Noisy Targets

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{H}_2</th>
<th>\mathcal{H}_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{in}</td>
<td>0.016</td>
<td>0.011</td>
</tr>
<tr>
<td>E_{out}</td>
<td>0.009</td>
<td>3797</td>
</tr>
</tbody>
</table>

Target Function

- 2nd-Order Hypothesis
- 10th-Order Hypothesis
- Noisy Samples
Simple model

Complex model

Number of training points, n

E_{out}

E_{in}

Expected error

Expected error
Bias-Variance Tradeoff (Example)

Bias of $\tilde{g}(\tilde{x}) \approx 0.50$
Variance of $g_D(\tilde{x}) \approx 0.25$
$\mathbb{E}_D[E_{out}(g_D)] \approx 0.75$

Bias of $\tilde{g}(\tilde{x}) \approx 0.21$
Variance of $g_D(\tilde{x}) \approx 1.74$
$\mathbb{E}_D[E_{out}(g_D)] \approx 1.95$
Experimental Setup

- $\mathcal{X} = \mathbb{R}$, $\mathcal{Y} = \mathbb{R}$ and $n = 100$

- f is a 10^{th}-order polynomial in x with additive Gaussian noise

$$y = \sum_{d=0}^{10} a_d x^d + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2)$$

- $\mathcal{H}_2 = 2^{nd}$-order polynomials
 - $\tilde{z} = \Phi_2(x) = [x, x^2]$

- $\mathcal{H}_{10} = 10^{th}$-order polynomials
 - $\tilde{z} = \Phi_{10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$
Noisy Targets

- 10-d target function with additive Gaussian noise
 \[y = f(x) + \epsilon \] where \(\epsilon \sim N(0, \sigma^2) \)
- \(\mathcal{H}_2 = 2^{nd}\)-order polynomial
- \(\mathcal{H}_{10} = 10^{th}\)-order polynomial
Noisy Targets

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{H}_2</th>
<th>\mathcal{H}_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{in}</td>
<td>0.018</td>
<td>0.010</td>
</tr>
<tr>
<td>E_{out}</td>
<td>0.009</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Noiseless Targets

- 50-d target function with no noise
 \[y = \sum_{d=0}^{50} a_d x^d \]
- \(\mathcal{H}_2 = 2^{\text{nd}}\)-order polynomial
- \(\mathcal{H}_{10} = 10^{\text{th}}\)-order polynomial
Noiseless Targets

<table>
<thead>
<tr>
<th>H_2</th>
<th>H_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{in}</td>
<td>0.003</td>
</tr>
<tr>
<td>E_{out}</td>
<td>0.004</td>
</tr>
</tbody>
</table>

![Graph showing the target function and hypothesis orders.](image-url)
Two Types of Noise

- Stochastic noise
 - Measurement error
 - Random
 - Not affected by choice of \mathcal{H}

- Deterministic noise
 - Limitations of \mathcal{H}
 - Not random
 - Dependent on \mathcal{H} and f

- Given a single dataset \mathcal{D} and a fixed \mathcal{H}, the two types of noise are indistinguishable
<table>
<thead>
<tr>
<th></th>
<th>Direction</th>
<th>Overfitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of points</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Stochastic noise</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Deterministic noise</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>
\[\mathbb{E}_D [E_{out}(g_D)] = \mathbb{E}_D [\mathbb{E}_{\tilde{x}} [(g_D(\tilde{x}) - y)^2]] \text{ where } y = f(\tilde{x}) + \epsilon \]

\[= \mathbb{E}_{\tilde{x}} [\text{Variance of } g_D(\tilde{x})] + \mathbb{E}_{\tilde{x}} [\text{Bias of } g(\tilde{x})] + \text{Stochastic noise} \]
\[\mathbb{E}_D[E_{out}(g_D)] = \mathbb{E}_D[\mathbb{E}_{\tilde{x}}[(g_D(\tilde{x}) - y)^2] \] where \(y = f(\tilde{x}) + \epsilon \)

\[
\begin{align*}
&= \mathbb{E}_{\tilde{x}}[\text{Variance of } g_D(\tilde{x})] \\
&+ \mathbb{E}_{\tilde{x}}[\text{Deterministic noise of } g(\tilde{x})] \\
&+ \text{Stochastic noise}
\end{align*}
\]