# CSE 417T: Introduction to Machine Learning

# Lecture 16: Bagging

Henry Chai

10/25/18



Decision Tree: Example

Decision Tree / ID<sub>3</sub> Pros Intuitive / explainable

• Can handle categorical and real-valued features

Automatically performs feature selection

• The ID<sub>3</sub> algorithm has a preference for shorter trees (simpler hypotheses)

Decision Tree / ID<sub>3</sub> Cons  The ID<sub>3</sub> algorithm is greedy (it selects the feature w/ the highest information gain at every step) so no optimality guarantee

Overfitting

 Can be addressed via heuristics ("regularization") or pruning ("validation"): Addressing Overfitting

- Heuristics ("regularization"):
  - Do not split leaves past a fixed depth  $\delta$
  - Do not split leaves with fewer than *c* labels
  - Do not split leaves where the maximal information gain is less than au
  - Predict the most common label at each leaf
- Pruning ("validation"):
  - Evaluate each split using a validation set
  - Compare the validation error with and without that split (replacing it with the most common label at that point)



Pruning: Example

- Input: a decision tree, t and a validation dataset,  $\mathcal{D}_{val}$
- Compute the validation error of t,  $E_{val}(t)$
- For each split,  $s \in t$ 
  - Compute  $E_{val}(t \setminus s)$  = the validation error of t with s replaced by a leaf using the most common label at s
- If  $\exists$  a split  $s \in t$  s.t.  $E_{val}(t \setminus s) \leq E_{val}(t)$ , repeat the pruning process with  $t \setminus s^*$  where  $t \setminus s^*$  is the pruned tree with minimal validation error (shorter trees win ties)
- Output: a pruned decision tree  $t \setminus s^*$









 $E_{val}(t \backslash s_1) = 0.4$ 

$$\mathcal{X}_1$$
 $\mathcal{X}_2$  $\mathcal{X}_3$  $\mathcal{X}_4$  $\mathcal{Y}$ RainDuringBackpackTiredMetroRainAfterBothNot TiredMetroNo RainBeforeBackpackNot TiredMetroNo RainDuringLunchboxTiredDriveNo RainAfterLunchboxTiredDrive

11









 $E_{val}(t) = 0$ 

#### Decision Tree / ID<sub>3</sub> Cons

 The ID<sub>3</sub> algorithm is greedy (it selects the feature w/ the highest information gain at every step) so no optimality guarantee

• Overfitting

 Can be addressed via heuristics ("regularization") or pruning ("validation"):

• High variance

### Bias-Variance Tradeoff (Example)



### Bias-Variance Tradeoff (Example)



 $\mathbb{E}_{\mathcal{D}}[E_{out}(g_{\mathcal{D}})] = \mathbb{E}_{\vec{x}}[\text{Variance of } g_{\mathcal{D}}(\vec{x}) + \text{Bias of } \bar{g}(\vec{x})]$ 

## Data

| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $x_4$     | у     |
|-----------------------|-----------------------|-----------------------|-----------|-------|
| Rain                  | Before                | Both                  | Tired     | Drive |
| Rain                  | During                | Both                  | Not Tired | Metro |
| Rain                  | During                | Both                  | Tired     | Drive |
| Rain                  | After                 | Backpack              | Not Tired | Metro |
| Rain                  | After                 | Backpack              | Tired     | Metro |
| Rain                  | After                 | Lunchbox              | Tired     | Drive |
| No Rain               | Before                | Backpack              | Tired     | Bike  |
| No Rain               | Before                | Lunchbox              | Not Tired | Metro |
| No Rain               | Before                | Lunchbox              | Tired     | Drive |
| No Rain               | During                | Backpack              | Not Tired | Metro |
| No Rain               | During                | Both                  | Tired     | Drive |
| No Rain               | After                 | Backpack              | Not Tired | Bike  |
| No Rain               | After                 | Backpack              | Tired     | Bike  |
| No Rain               | After                 | Both                  | Not Tired | Metro |
| No Rain               | After                 | Both                  | Tired     | Drive |
| No Rain               | After                 | Lunchbox              | Not Tired | Metro |

## Data

| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $x_4$     | у     |
|-----------------------|-----------------------|-----------------------|-----------|-------|
| Rain                  | Before                | Both                  | Tired     | Drive |
| Rain                  | During                | Both                  | Not Tired | Drive |
| Rain                  | During                | Both                  | Tired     | Drive |
| Rain                  | After                 | Backpack              | Not Tired | Metro |
| Rain                  | After                 | Backpack              | Tired     | Metro |
| Rain                  | After                 | Lunchbox              | Tired     | Drive |
| No Rain               | Before                | Backpack              | Tired     | Bike  |
| No Rain               | Before                | Lunchbox              | Not Tired | Metro |
| No Rain               | Before                | Lunchbox              | Tired     | Drive |
| No Rain               | During                | Backpack              | Not Tired | Metro |
| No Rain               | During                | Both                  | Tired     | Drive |
| No Rain               | After                 | Backpack              | Not Tired | Bike  |
| No Rain               | After                 | Backpack              | Tired     | Bike  |
| No Rain               | After                 | Both                  | Not Tired | Metro |
| No Rain               | After                 | Both                  | Tired     | Drive |
| No Rain               | After                 | Lunchbox              | Not Tired | Metro |



Decision Tree: Example

Bagging

- Short for <u>B</u>ootstrap <u>agg</u>regating
- Combines the prediction of many hypotheses to reduce variance

• If *n* independent random variables  $x_1, x_2, ..., x_n$  all have variance  $\sigma^2$ , then the variance of  $\frac{1}{n} \sum_{i=1}^n x_i$  is  $\frac{\sigma^2}{n}$ 

#### Bootstrapping

• A statistical method for estimating properties of a distribution, given (potentially a small number of) samples from that distribution

 Relies on resampling the samples with replacement many, many times

#### Bootstrapping: Example

• Suppose you want to know the mean of a distribution so you draw 8 samples from that distribution:  $\mathcal{D} =$ {1.70, -0.23, 0.54, -0.38, -1.53, 0.84, 0.60, 1.84}

 $\{1.84, 0.84, 1.84, -1.53, 1.84, 1.84, 1.84, -0.23\}$ 

#### Bootstrapping: Example

• Suppose you want to know the mean of a distribution so you draw 8 samples from that distribution:  $\mathcal{D} =$ {1.70, -0.23, 0.54, -0.38, -1.53, 0.84, 0.60, 1.84}

• Resample 8 values (with replacement) from  $\mathcal{D}$  1000 times

• Compute the mean of each new resampled set

• Use these means to build point estimates (e.g. 0.43) or confidence intervals (e.g. [-0.31, 1.12])

### Aggregating

• Combining multiple hypotheses,  $\{h_1, h_2, \dots, h_m\}$ , to arrive at a single hypothesis

• Regression: average the predictions  $\left(\overline{h}(\vec{x}) = \frac{1}{m} \sum_{i=1}^{m} h_i(\vec{x})\right)$ 

• Classification: find the category that the most hypotheses predict (plurality vote)

Bagging Decision Trees

- Input:  $\mathcal{D} = \{(\overrightarrow{x_1}, y_1), (\overrightarrow{x_2}, y_2), \dots, (\overrightarrow{x_n}, y_n)\}, B$
- For *b* = 1, 2, ..., *B* 
  - Create a dataset,  $\mathcal{D}_b$ , by sampling n points from  $\mathcal{D}$  with replacement
  - Learn a decision tree,  $t_b$ , using  $\mathcal{D}_b$  and the ID3 algorithm
- Output:  $\overline{t}$ , the aggregated hypothesis

Bagging

- Short for <u>B</u>ootstrap <u>agg</u>regating
- Combines the prediction of many hypotheses to reduce variance

• If *n* independent random variables  $x_1, x_2, ..., x_n$  all have variance  $\sigma^2$ , then the variance of  $\frac{1}{n} \sum_{i=1}^n x_i$  is  $\frac{\sigma^2}{n}$ 

Split-Feature Randomization

- Predictions made by trees trained on similar datasets are highly correlated
- To decorrelate these predictions, randomly limit the features available at each iteration of the ID<sub>3</sub> algorithm
- Every time the ID<sub>3</sub> algorithm goes to split an impure leaf, randomly select m < d features and only allow the algorithm to use one of those m features.
  - For classification, a common choice is  $m = \sqrt{d}$
  - For regression, a common choice is  $m = \frac{d}{3}$

Random Forests

- Input:  $\mathcal{D} = \{(\overrightarrow{x_1}, y_1), (\overrightarrow{x_2}, y_2), \dots, (\overrightarrow{x_n}, y_n)\}, B, m$
- For *b* = 1, 2, ..., *B* 
  - Create a dataset,  $\mathcal{D}_b$ , by sampling n points from  $\mathcal{D}$  with replacement
  - Learn a decision tree,  $t_b$ , using  $\mathcal{D}_b$  and the ID3 algorithm with split-feature randomization
- Output:  $\overline{t}$ , the aggregated hypothesis

Random Forests and Validation • For each training point,  $\vec{x_i}$ , there are some trees which  $\vec{x_i}$  was not used to train (roughly B/e); let these trees be  $t_i^- = \{t_{i,1}^-, t_{i,2}^-, \dots, t_{i,n_i}^-\}$ 

• Compute an aggregated prediction for each  $\vec{x_i}$  using  $t_i^-$ : (e.g. for regression)  $\overline{t_i^-}(\vec{x_i}) = \frac{1}{n_i} \sum_{j=1}^{n_i} t_{i,j}^-(\vec{x_i})$ 

• Compute the out-of-bag (OOB) error:

$$E_{OOB} = \frac{1}{n} \sum_{i=1}^{n} e\left(y_i, \overline{t}_i^-(\overline{x}_i)\right)$$

• *E<sub>00B</sub>* is almost an unbiased estimator of *E<sub>out</sub>* 

Random Forests and Feature Selection

- The interpretability of decision trees gets lost when we switch to random forests
- Random forests allow for the computation of "variable importance", a way of ranking features based on how useful they are at predicting the output
- Initialize each feature's importance to zero
- Each time a feature is chosen by the ID<sub>3</sub> algorithm (with split-feature randomization), add that feature's information gain (relative to the split) to its importance