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Decision Tree / 
ID3 Pros

� Intuitive / explainable

� Can handle categorical and real-valued features

� Automatically performs feature selection

� The ID3 algorithm has a preference for shorter trees 
(simpler hypotheses)
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Decision Tree / 
ID3 Cons

� The ID3 algorithm is greedy (it selects the feature w/ 
the highest information gain at every step) so no 
optimality guarantee

� Overfitting

� Can be addressed via heuristics (”regularization”) 
or pruning (“validation”):
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Addressing 
Overfitting

� Heuristics (”regularization”):
� Do not split leaves past a fixed depth !
� Do not split leaves with fewer than " labels

� Do not split leaves where the maximal information 
gain is less than #

� Predict the most common label at each leaf

� Pruning (“validation”):
� Evaluate each split using a validation set 

� Compare the validation error with and without that 
split (replacing it with the most common label at 
that point)
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Pruning: 
Example

� Input: a decision tree, ! and a validation dataset, "#$%
� Compute the validation error of !, &#$% !
� For each split, ' ∈ !

� Compute &#$% !\' = the validation error of ! with '
replaced by a leaf using the most common label at '

� If ∃ a split ' ∈ ! s.t. &#$% !\' ≤ &#$% ! , repeat the 
pruning process with !\'∗ where !\'∗ is the pruned tree 
with minimal validation error (shorter trees win ties)

� Output: a pruned decision tree !\'∗
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Decision Tree / 
ID3 Cons

� The ID3 algorithm is greedy (it selects the feature w/ 
the highest information gain at every step) so no 
optimality guarantee

� Overfitting

� Can be addressed via heuristics (”regularization”) 
or pruning (“validation”):

� High variance
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Bias-Variance 
Tradeoff
(Example)
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Bias-Variance 
Tradeoff
(Example)
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Bagging

� Short for Bootstrap aggregating

� Combines the prediction of many hypotheses to reduce 
variance 

� If ! independent random variables "#, "%, … , "' all have 

variance (%, then the variance of                   is )
*

'
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Bootstrapping

� A statistical method for estimating properties of a 
distribution, given (potentially a small number of) 
samples from that distribution

� Relies on resampling the samples with replacement 
many, many times
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Bootstrapping: 
Example

� Suppose you want to know the mean of a distribution so 
you draw 8 samples from that distribution: ! =

1.70,−0.23, 0.54, −0.38,−1.53, 0.84, 0.60, 1.84

� Resample 8 values (with replacement) from ! 1000 times:
−0.23, 0.54,−0.38,−1.53,−0.23,−0.38,−0.23,−1.53
−0.38, 0.60,−0.38, 1.85, −0.38,−0.38, 1.84, −0.23

⋮
1.84, 0.84, 1.84, −1.53, 1.84, 1.84, 1.84, −0.23
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Bootstrapping: 
Example

� Suppose you want to know the mean of a distribution so 
you draw 8 samples from that distribution: ! =

1.70,−0.23, 0.54, −0.38,−1.53, 0.84, 0.60, 1.84

� Resample 8 values (with replacement) from ! 1000 times

� Compute the mean of each new resampled set

� Use these means to build point estimates (e.g. 0.43) or 
confidence intervals (e.g. [-0.31,	1.12]) 
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Aggregating

� Combining multiple hypotheses, ℎ", ℎ$, … , ℎ& , to 
arrive at a single hypothesis

� Regression: average the predictions

� Classification: find the category that the most 
hypotheses predict (plurality vote)
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Bagging 
Decision Trees

� Input: ! = #$, &$ , #', &' , … , #), &) , *
� For + = 1, 2, … , *

� Create a dataset, !., by sampling / points from !
with replacement

� Learn a decision tree, 0., using !. and the ID3 
algorithm

� Output: ̅0, the aggregated hypothesis 
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Bagging

� Short for Bootstrap aggregating

� Combines the prediction of many hypotheses to reduce 
variance 

� If ! independent random variables "#, "%, … , "' all have 

variance (%, then the variance of                   is )
*

'
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Split-Feature 
Randomization

� Predictions made by trees trained on similar datasets 
are highly correlated

� To decorrelate these predictions, randomly limit the 
features available at each iteration of the ID3 algorithm

� Every time the ID3 algorithm goes to split an impure 
leaf, randomly select ! < # features and only allow 
the algorithm to use one of those ! features. 

� For classification, a common choice is ! = #

� For regression, a common choice is ! = %
&
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Random 
Forests

� Input: ! = #$, &$ , #', &' , … , #), &) , *, +
� For , = 1, 2, … , *

� Create a dataset, !/, by sampling 0 points from !
with replacement

� Learn a decision tree, 1/, using !/ and the ID3 
algorithm with split-feature randomization

� Output: ̅1, the aggregated hypothesis 
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Random 
Forests and 
Validation

� For each training point, !", there are some trees which  
!" was not used to train (roughly ⁄$ %); let these trees be 
&"' = &",*' , &",+' , … , &",-.'

� Compute an aggregated prediction for each !" using &"': 

� Compute the out-of-bag (OOB) error:

� /001 is almost an unbiased estimator of /234
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Random 
Forests and 
Feature 
Selection

� The interpretability of decision trees gets lost when we 
switch to random forests

� Random forests allow for the computation of “variable 
importance”, a way of ranking features based on how 
useful they are at predicting the output

� Initialize each feature’s importance to zero

� Each time a feature is chosen by the ID3 algorithm 
(with split-feature randomization), add that feature’s 
information gain (relative to the split) to its importance
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