Recall

- Boosting is another ensemble method (like bagging) that combines the predictions of multiple hypotheses.

- Aims to reduce the bias of a “weak” or highly biased hypothesis set (can also reduce variance).
AdaBoost

- Intuition: iteratively reweight inputs, giving more weight to inputs that are difficult-to-predict correctly

- Analogy:
 - You all have to take the midterm again 😨 ...
 - ... but you’re going to be taking it one at a time.
 - After you finish, you get to tell the next person the questions you struggled with.
 - Hopefully, they can cover for you because...
 - ... if “enough” of you get a question right, you’ll all receive full credit for that problem
• Input: \(\mathcal{D} (\mathcal{Y} = \{-1, +1\}) \), \(T \)

• Initialize input weights: \(\omega_1^{(0)}, \ldots, \omega_n^{(0)} = \frac{1}{n} \)

• For \(t = 1, \ldots, T \)
 1. Train a weak learner (hypothesis), \(h_t \), by minimizing the weighted training error
 2. Compute the weighted training error of \(h_t \):

\[
\epsilon_t = \sum_{i=1}^{n} \omega_i^{(t-1)} [h_t(x_i^+) \neq y_i]
\]

 3. Compute the "importance" of \(h_t \):

\[
\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
\]

 4. Update the weights:

\[
\omega_i^{(t)} = \frac{\omega_i^{(t-1)} e^{-\alpha_t} \mathbb{I}(h_t(x_i^+) = y_i)}{Z_t} \times \left\{ \begin{array}{ll}
 e^{\alpha_t} & \text{if } h_t(x_i^+) \neq y_i \\
 e^{-\alpha_t} & \text{if } h_t(x_i^+) = y_i
\end{array} \right.
\]

• Output: an aggregated hypothesis

\[
g_T(\vec{x}) = \text{sign}(H_T(\vec{x})) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(\vec{x}) \right)
\]
\[
\frac{1}{n} \sum_{i=1}^{n} \left[y_i \neq g_T(x_i) \right] \leq \frac{1}{n} \sum_{i=1}^{n} e^{-y_i H_T(x_i)}
\]

\[
= \prod_{t=1}^{T} Z_t
\]

\[
= \prod_{t=1}^{T} 2 \sqrt{\epsilon_t(1 - \epsilon_t)} \to 0 \text{ as } T \to \infty
\]

\[
(\text{as long as } \epsilon_t < \frac{1}{2} \ \forall \ t)
\]
Out-of-sample Error

· For AdaBoost, with high probability:

\[E_{out}(g) \leq E_{in}(g) + \tilde{O} \left(\sqrt{\frac{d_{vc}(\mathcal{H})T}{n}} \right) \]

where \(d_{vc}(\mathcal{H}) \) is the VC-dimension of the weak learners,
\(T \) is the number of weak learners,
\(n \) is the number of training data points

· Empirical results indicate that increasing \(T \) does not lead to overfitting as this bound would suggest
• After running Adaboost for T rounds, the returned hypothesis is

$$g_T(\vec{x}) = \text{sign}(H_T(\vec{x})) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(\vec{x}) \right)$$

• The margin of training point (\vec{x}_i, y_i) is defined as:

$$m(\vec{x}_i, y_i) = \frac{y_i H_T(\vec{x})}{\sum_{t=1}^{T} \alpha_t}$$

• The margin of (\vec{x}_i, y_i) is positive if g_T is correct at predicting \vec{x}_i

• The margin can be interpreted as how confident g_T is in its prediction: the bigger the margin, the more confident
For AdaBoost, with high probability:

\[
E_{out}(g) \leq \frac{1}{n} \sum_{i=1}^{n} [m(x_i, y_i) \leq \theta] + \tilde{O}\left(\sqrt{\frac{d_{vc}(\mathcal{H})}{n\theta^2}}\right)
\]

where \(d_{vc}(\mathcal{H})\) is the VC-dimension of the weak learners,
\(n\) is the number of training data points,
\(\theta > 0\) is an arbitrary parameter.
We have learned/will learn about lots of complicated machine learning hypotheses; how about something simple?
The Duck Test

Duck test

From Wikipedia, the free encyclopedia

For the use of "the duck test" within the Wikipedia community, see Wikipedia:DUCK.

The duck test is a form of abductive reasoning. This is its usual expression:

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.
The Duck Test for Machine Learning

- Classify a point as the label of the “most similar” training point
• Euclidean distance: \(d(\vec{x}, \vec{x}') = \|\vec{x} - \vec{x}'\| = \sum_{j=1}^{D} (x_j - x'_j)^2 \)

• Alternatives:
 • Cosine similarity: \(d(\vec{x}, \vec{x}') = \frac{\vec{x}^T \vec{x}'}{||\vec{x}|| ||\vec{x}'||} \)
 • Mahalanobis distance: \(d(\vec{x}, \vec{x}') = (\vec{x} - \vec{x}')^T \Sigma^{-1} (\vec{x} - \vec{x}') \)

where \(\Sigma \) is any positive semidefinite matrix
Nearest Neighbor

- Given $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}$ and a point \vec{x}
- Let $\vec{x}_{[1]}(\vec{x})$ be \vec{x}’s nearest neighbor i.e. the closest point to \vec{x} in \mathcal{D}
- Similarly, let $\vec{x}_{[2]}(\vec{x})$ be the 2nd closest point to \vec{x} in \mathcal{D} and let $\vec{x}_{[i]}(\vec{x})$ be the i^{th} closest point to \vec{x} in \mathcal{D}

\[
\begin{align*}
d(\vec{x}, \vec{x}_{[1]}(\vec{x})) & \leq d(\vec{x}, \vec{x}_{[2]}(\vec{x})) \\
& \leq \cdots \\
& \leq d(\vec{x}, \vec{x}_{[n]}(\vec{x}))
\end{align*}
\]
The Nearest Neighbor Hypothesis

\[g(\vec{x}) = y_{[1]}(\vec{x}) \]
The Nearest Neighbor Hypothesis

\[g(\vec{x}) = y_{[1]}(\vec{x}) \]
The Nearest Neighbor Hypothesis

- \(g(\vec{x}) = y_{[1]}(\vec{x}) \)

- Requires no training!

- Always has zero training error!

- Always has zero training error...
Generalization of Nearest Neighbor

- Claim: E_{out} for the nearest neighbor hypothesis is not much worse than the best possible E_{out}!

- Formally: under certain conditions, with high probability, $E_{out}(g) \leq 2E_{out}(g^*)$ as $n \to \infty$

- Proof:
 - Assume a binary classification problem: $Y = \{-1, +1\}$
 - Assume labels are noisy: let $\pi(\hat{x}) = P\{y = +1|\hat{x}\}$
 - Assume $\pi(\hat{x})$ is continuous
 - As $n \to \infty$, $\hat{x}_{[1]}(\hat{x}) \to \hat{x} \implies \pi(\hat{x}_{[1]}(\hat{x})) \to \pi(\hat{x})$
Generalization of Nearest Neighbor

• Proof (Continued):

\[E_{out}(g) = \mathbb{E}_{\tilde{x}}[\mathbb{I}[g(\tilde{x}) \neq y]] = P\{g(\tilde{x}) \neq y\} \]

\[= P\{g(\tilde{x}) = +1 \cap y = -1\} \]

\[+ P\{g(\tilde{x}) = -1 \cap y = +1\} \]

\[= \pi(\tilde{x}_{[1]}(\tilde{x})) \left(1 - \pi(\tilde{x})\right) \]

\[+ \left(1 - \pi(\tilde{x}_{[1]}(\tilde{x}))\right) \pi(\tilde{x}) \]

\[\to \pi(\tilde{x}) \left(1 - \pi(\tilde{x})\right) + \left(1 - \pi(\tilde{x})\right) \pi(\tilde{x}) \]

\[= 2\pi(\tilde{x}) \left(1 - \pi(\tilde{x})\right) \]

\[\leq 2 \min\left(\pi(\tilde{x}), (1 - \pi(\tilde{x}))\right) \]
Generalization of Nearest Neighbor

• Claim: E_{out} for the nearest neighbor hypothesis is not much worse than the best possible E_{out}!

• Formally: with high probability, $E_{out}(g) \leq 2E_{out}(g^*)$ as $n \to \infty$.

• Interpretation: half of the data’s predictive power is in the nearest neighbor!
Self-Regularization

The nearest neighbor hypothesis can only be complex when there is more data.
k-Nearest Neighbors (kNN)

- Classify a point as the most common label among the labels of the k nearest training points

- If we have a binary classification problem and k is odd:

$$g(\tilde{x}) = \text{sign} \left(\sum_{i=1}^{k} y_{[i]}(\tilde{x}) \right)$$

- When $k = 1$, g is the nearest neighbor hypothesis

- When $k = n$, g always predicts the most common label in the training dataset
Setting k

- When $k = 1$, g is the nearest neighbor hypothesis
 - many, complicated decision boundaries
 - may overfit

- When $k = n$, g always predicts the most common label in the training dataset
 - no decision boundaries
 - may underfit

- k controls the complexity of the hypothesis set $\Rightarrow k$ affects how well the learned hypothesis will generalize
Setting k

- Idea: make k a function of n, $k(n)$

- Theorem:
 - If $k(n) \to \infty$ as $n \to \infty$ and $\frac{k(n)}{n} \to 0$ as $n \to \infty$ …
 - … then $E_{in}(g) \to E_{out}(g)$ and $E_{out}(g) \to E_{out}(g^*)$

- Practical rules of thumb:
 - $k = 3$
 - $k = \lfloor \sqrt{n} \rfloor$
 - Cross-validation
kNN Pros and Cons

- **Pros:**
 - Intuitive / explainable
 - No training / retraining
 - Provably near-optimal in terms of E_{out}

- **Cons:**
 - Computationally expensive
 - Always needs to store all data: $O(nD)$
 - Computing $g(\vec{x})$ requires computing $d(\vec{x}, \vec{x}') \forall \vec{x}' \in \mathcal{D}$ and finding the k closest points: $O(nD + n \log(k))$
 - Suffers from the “curse of dimensionality”
Curse of Dimensionality

- The fundamental assumption of kNN is that “similar” points or points close to one another should have the same label.
- The closer two points are, the more confident we can be that they will have the same label.
- As the number of dimensions the input has grows, the less likely it is that two random points will be close.
- As the number of dimensions the input has grows, it takes more points to “cover” the input space.
Suppose you independently draw two one-dimensional points between 0 and 1 uniformly at random:

\[
\mathbb{E}[d(x, x')] = \mathbb{E}[(x - x')^2] = \mathbb{E}[x^2 - 2xx' + x'^2] = \mathbb{E}[x^2] - 2\mathbb{E}[x]\mathbb{E}[x'] + \mathbb{E}[x'^2] = 2\mathbb{E}[x^2] - 2\mathbb{E}[x]^2 = 2 \left(\frac{1}{3} \right) - 2 \left(\frac{1}{2} \right)^2 = \frac{1}{6}
\]
Suppose you independently draw two two-dimensional points in the unit square uniformly at random:

\[
\begin{align*}
\mathbb{E}[d(x, x')] &= \mathbb{E}[(x_1 - x'_1)^2 + (x_2 - x'_2)^2] \\
&= 2 \mathbb{E}[(x_1 - x'_1)^2] \\
&= 2 \left(\frac{1}{6} \right) = \frac{1}{3}
\end{align*}
\]
Suppose you independently draw two three-dimensional points in the unit cube uniformly at random:

\[
\begin{align*}
\mathbb{E}[d(x, x')] &= \mathbb{E}[(x_1 - x'_1)^2 + (x_2 - x'_2)^2 + (x_3 - x'_3)^2] \\
&= 3\mathbb{E}[(x_1 - x'_1)^2] \\
&= 3 \left(\frac{1}{6} \right) = \frac{1}{2}
\end{align*}
\]
• Assume all dimensions of the input are i.i.d.

\[P(\vec{x}) = \prod_{j=1}^{D} p(x_j) \]

• Given \(n \) inputs, \(\{\vec{x}_1, \ldots, \vec{x}_n\} \), and a random query point, \(\vec{x}^* \), all drawn i.i.d. from the distribution above, let

\[d_+ = \max_{\vec{x} \in \{\vec{x}_1, \ldots, \vec{x}_n\}} d(\vec{x}, \vec{x}^*) \quad \text{and} \quad d_- = \min_{\vec{x} \in \{\vec{x}_1, \ldots, \vec{x}_n\}} d(\vec{x}, \vec{x}^*) \]

• Then:

\[
\lim_{D \to \infty} \mathbb{E} \left[\frac{d_+ - d_-}{d_-} \right] \to 0
\]
Curing the Curse of Dimensionality

- More data
- Fewer dimensions
- Blessing of non-uniformity: data from the real world is rarely uniformly distributed across the input space