CSE 417T: Introduction to Machine Learning

Lecture 19: *k*-Nearest Neighbors

Henry Chai

11/06/18

Recall

 Classify a point as the label of the "most similar" training point

• Euclidean distance:
$$d(\vec{x}, \vec{x}') = ||\vec{x} - \vec{x}'|| = \sum_{j=1}^{D} (x_j - x_j')^2$$

• Given $\mathcal{D} = \{(\overrightarrow{x_1}, y_1), (\overrightarrow{x_2}, y_2), \dots, (\overrightarrow{x_n}, y_n)\}$ and a point \vec{x} , let $\vec{x}_{[i]}(\vec{x})$ be the i^{th} closest point to \vec{x} in \mathcal{D}

The Nearest Neighbor Hypothesis

$$g(\vec{x}) = y_{[1]}(\vec{x})$$

Generalization of Nearest Neighbor

- Claim: E_{out} for the nearest neighbor hypothesis is not much worse than the best possible E_{out} !
- Formally: under certain conditions, with high probability, $E_{out}(g) \leq 2E_{out}(g^*)$ as $n \to \infty$
- Interpretation: half of the data's predictive power is in the nearest neighbor!

k-NearestNeighbors(kNN)

- ${f \cdot}$ Classify a point as the most common label among the labels of the k nearest training points
- If we have a binary classification problem and k is odd:

$$g(\vec{x}) = \operatorname{sign}\left(\sum_{i=1}^{k} y_{[i]}(\vec{x})\right)$$

- k controls the complexity of the hypothesis set $\Longrightarrow k$ affects how well the learned hypothesis will generalize
 - k = 3
 - $k = \left| \sqrt{n} \right|$
 - Cross-validation

*k*NN Pros and Cons

- Pros:
 - Intuitive / explainable
 - No training / retraining
 - Self-regularizes
 - Provably near-optimal in terms of E_{out}
- Cons:
 - Computationally expensive
 - Always needs to store all data: O(nD)
 - Computing $g(\vec{x})$ requires computing $d(\vec{x}, \vec{x}') \ \forall \ \vec{x}' \in \mathcal{D}$ and finding the k closest points: $O(nD + n \log(k))$
 - Suffers from the "curse of dimensionality"

Curse of Dimensionality

- The fundamental assumption of $k{\rm NN}$ is that "similar" points or points close to one another should have the same label
- The closer two points are, the more confident we can be that they will have the same label
- As the number of dimensions the input has grows, the less likely it is that two random points will be close
- As the number of dimensions the input has grows, it takes more points to "cover" the input space

Curing the Curse of Dimensionality

More data

Fewer dimensions

• Blessing of non-uniformity: data from the real world is rarely uniformly distributed across the input space

Computational Cost of *k*NN

- No training required!
- Memory: O(nD)
- Computing $g(\vec{x})$: $O(nD + n \log(k))$

- Idea: preprocess inputs in order to speed up predictions
 - Reduce the number of inputs held in memory by eliminating redundancies
 - Organize inputs in data structures that make searching for nearest neighbors more efficient

Data Condensing

- Reduce the number of inputs while maintaining the same decision boundary
- Let $g_{\mathcal{D}}$ be the kNN hypothesis when trained on ${\mathcal{D}}$
- $S \subseteq \mathcal{D}$ is decision-boundary consistent if: $g_S(\vec{x}) = g_{\mathcal{D}}(\vec{x}) \ \forall \ \vec{x} \in \mathcal{X}$
- Decision-boundary consistent subsets are computationally expensive to find

Data Condensing

- Reduce the number of inputs while maintaining the same predictions on all inputs
- ullet Let $g_{\mathcal{D}}$ be the kNN hypothesis when trained on ${\mathcal{D}}$
- $S \subseteq \mathcal{D}$ is training-set consistent if:

$$g_{\mathcal{S}}(\overrightarrow{x_i}) = g_{\mathcal{D}}(\overrightarrow{x_i}) \ \forall \ \overrightarrow{x_i} \in \mathcal{D}$$

• Training-set consistent is a much weaker constraint than decision-boundary consistent

Condensed Nearest Neighbor (CNN)

- Input: $\mathcal{D} = \{(\overrightarrow{x_1}, y_1), (\overrightarrow{x_2}, y_2), \dots, (\overrightarrow{x_n}, y_n)\}, k$
- Compute $g_{\mathcal{D}}(\overrightarrow{x_i}) \ \forall \ \overrightarrow{x_i} \in \mathcal{D}$
- Initialize S to k random points in \mathcal{D} and compute $g_S(\overrightarrow{x_i}) \ \forall \ \overrightarrow{x_i} \in \mathcal{D}$
- While $\exists \ \overrightarrow{x_j} \in \mathcal{D} \text{ s.t. } g_S(\overrightarrow{x_j}) \neq g_{\mathcal{D}}(\overrightarrow{x_j})$
 - Randomly pick a point $\overrightarrow{x_j} \in \mathcal{D}$ s.t. $g_S(\overrightarrow{x_j}) \neq g_{\mathcal{D}}(\overrightarrow{x_j})$
 - Let \vec{x}^* be the point closest to $\overrightarrow{x_j}$ that is not already in S and has label $y^* = g_{\mathcal{D}}(\overrightarrow{x_j})$
 - Add \vec{x}^* to S and recompute $g_S(\vec{x_i}) \ \forall \ \vec{x_i} \in \mathcal{D}$
- Output: S, a training-set consistent subset of \mathcal{D}

CNN Example

$$k = 3$$

$$g_S(\vec{x}) = -1, g_D(\vec{x}) = +1$$

CNN Example

$$k = 3$$

$$g_S(\vec{x}) = -1, g_D(\vec{x}) = +1$$

Organizing the Inputs

- Intuition: split the inputs into clusters, groups of points that are close to one another but far from other groups.
- If an input point is really close to one group of points and really far from the other groups ...
- ... then we can skip searching through the other groups and just look for nearest neighbors in the close group!
- Questions:
 - What does it mean for a point to be close to a group?
 - How can we split the input into clusters?

Organizing the Inputs

Let $\vec{x}_{[i]}^{j}(\vec{x})$ be the i^{th} closest point to \vec{x} in the cluster S_{j}

$$\|\vec{x} - \overrightarrow{\mu_j}\| - r_j \le \|\vec{x} - \vec{x}_{[1]}^j(\vec{x})\|$$

• If
$$\exists S_i$$
 s.t. $\|\vec{x} - \vec{x}_{[1]}^i(\vec{x})\| \le \|\vec{x} - \overrightarrow{\mu_j}\| - r_j \dots$

• ... then we don't need to search S_j for the nearest neighbor

Organizing the Inputs

Let $\vec{x}_{[i]}^{j}(\vec{x})$ be $\vec{x}_{[2]}^{2}(\vec{x})$ the i^{th} closest point to \vec{x} in the cluster S_{j}

$$\|\vec{x} - \overrightarrow{\mu_j}\| - r_j \le \|\vec{x} - \vec{x}_{[1]}^j(\vec{x})\| \le \dots \le \|\vec{x} - \vec{x}_{[k]}^j(\vec{x})\|$$

• If
$$\exists S_i$$
 s.t. $\|\vec{x} - \vec{x}_{[k]}^i(\vec{x})\| \le \|\vec{x} - \overrightarrow{\mu_j}\| - r_j \dots$

• ... then we don't need to search S_j for the k nearest neighbors

Clustering Inputs

• We want
$$\|\vec{x} - \vec{x}_{[1]}^i(\vec{x})\| \le \|\vec{x} - \overrightarrow{\mu_j}\| - r_j$$

- We want $\|\vec{x} \overrightarrow{\mu_i}\| + r_i \le \|\vec{x} \overrightarrow{\mu_j}\| r_j$
- Suppose $\vec{x} \approx \overrightarrow{\mu_i}$

•
$$\|\vec{x} - \overrightarrow{\mu_i}\| \approx 0$$
 and $\|\vec{x} - \overrightarrow{\mu_j}\| \approx \|\overrightarrow{\mu_i} - \overrightarrow{\mu_j}\|$

- We want $r_i \le \left\| \overrightarrow{\mu_i} \overrightarrow{\mu_j} \right\| r_j \Longrightarrow r_i + r_j \le \left\| \overrightarrow{\mu_i} \overrightarrow{\mu_j} \right\|$
- We want cluster centers to be far apart and cluster radii to be small

Clustering Inputs: Example

- Input: $\mathcal{D} = \{\overrightarrow{x_1}, \overrightarrow{x_2}, ..., \overrightarrow{x_n}\}, C$
- Initialize M to a random point $\vec{x} \in \mathcal{D}$ and set $S_1 = \vec{x}$
- For c = 2 ... C
 - Find the point $\vec{x}^* \in \mathcal{D} \setminus M$ that is farthest from M, add \vec{x}^* to M and set $S_c = \vec{x}^*$:

$$\vec{x}^* = \underset{\vec{x}^* \in \mathcal{D} \setminus M}{\operatorname{argmax}} \left(\underset{\vec{x} \in M}{\min} || \vec{x}^* - \vec{x} || \right)$$

- For i = 1 ... n
 - Find the cluster center $\overrightarrow{x_c} \in M$ closest to $\overrightarrow{x_i}$ and assign $\overrightarrow{x_i}$ to S_c :

$$\overrightarrow{x_c} = \underset{\overrightarrow{x} \in M}{\operatorname{argmin}}(\|\overrightarrow{x_i} - \overrightarrow{x}\|)$$

- For c = 1 ... C
 - Update S_c 's cluster center and compute the radius:

$$\overrightarrow{\mu_c} = \frac{1}{|S_c|} \sum_{\overrightarrow{x} \in S_c} \overrightarrow{x} \text{ and } r_c = \max_{\overrightarrow{x} \in S_c} ||\overrightarrow{\mu_c} - \overrightarrow{x}||$$

• Output: cluster centers $\mu = \{\overrightarrow{\mu_1}, \overrightarrow{\mu_2}, ..., \overrightarrow{\mu_C}\}$, radii $\overrightarrow{r} = \{r_1, r_2, ..., r_C\}$ and clusters $S = \{S_1, S_2, ..., S_C\}$

Making Predictions: Example

- Input: $\mathcal{D} = \{(\overrightarrow{x_1}, y_1), (\overrightarrow{x_2}, y_2), \dots, (\overrightarrow{x_n}, y_n)\}, C, k, \vec{x}$
- Cluster the input into C clusters O(CnD)
- Find S_c , the cluster whose center is closest to \vec{x}
- Find $\vec{x}_{[k]}^c(\vec{x})$, the k^{th} closest point to \vec{x} in S_c
- Find $\{\vec{x}_{[1]}(\vec{x}), ..., \vec{x}_{[k]}(\vec{x})\}$ the k closest points to \vec{x} , ignoring all clusters $S_{c'}$ s.t. $\|\vec{x} \vec{x}_{[k]}^c(\vec{x})\| \leq \|\vec{x} \overline{\mu_{c'}}\| r_{c'}$ (hopefully less than $O(nD + n\log(k))$)
- Output: $\{\vec{x}_{[1]}(\vec{x}), ..., \vec{x}_{[k]}(\vec{x})\}$

Parametric vs. Nonparametric

- Parametric learning models
 - Hypotheses have a parametrized form
 - Example: linear regression $g(\vec{x}) = \vec{w}^T \vec{x}$ has D+1 parameters, $\{w_0, w_1, ..., w_D\}$
 - Parameters learned from training data; can discard the training data afterwards
 - Cannot exactly model every target function
- Non-parametric learning models
 - Hypotheses cannot be expressed using a finite number of parameters
 - Example: kNN, decision trees
 - Training data generally needs to be stored in order to make predictions
 - Can recover any target function given enough data