
CSE 417T: Introduction to
Machine Learning

Lecture 19: !-Nearest
Neighbors
Henry Chai

11/06/18

Recall

� Classify a point as the label of the “most similar”
training point

� Euclidean distance:

� Given ! = #$, &$, #', &' , … , #), &) and a point
#⃗, let #⃗ + #⃗ be the ,-. closest point to #⃗ in !

2

/ #⃗, #⃗0 = #⃗ − #⃗0 =2
34$

5
#3 − #30

'

The Nearest
Neighbor Hypothesis

! #⃗ = % & #⃗

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-
-

--

-

Generalization
of Nearest
Neighbor

� Claim: !"#$ for the nearest neighbor hypothesis is not
much worse than the best possible !"#$!

� Formally: under certain conditions, with high
probability, !"#$ % ≤ 2!"#$ %∗ as) → ∞

� Interpretation: half of the data’s predictive power is in
the nearest neighbor!

4

!-Nearest
Neighbors
(!NN)

� Classify a point as the most common label among the
labels of the ! nearest training points

� If we have a binary classification problem and ! is odd:

" $⃗ = sign *
+,-

.
/ + $⃗

� ! controls the complexity of the hypothesis set ⟹ !
affects how well the learned hypothesis will generalize

� ! = 3
� ! = 2
� Cross-validation

5

!NN Pros and
Cons

� Pros:

� Intuitive / explainable

� No training / retraining

� Self-regularizes

� Provably near-optimal in terms of "#$%
� Cons:

� Computationally expensive

� Always needs to store all data: & '(
� Computing) +⃗ requires computing , +⃗, +⃗. ∀ +⃗. ∈
1 and finding the ! closest points: & '(+ ' log !

� Suffers from the ”curse of dimensionality”

6

Curse of
Dimensionality

� The fundamental assumption of !NN is that “similar”
points or points close to one another should have the
same label

� The closer two points are, the more confident we can
be that they will have the same label

� As the number of dimensions the input has grows, the
less likely it is that two random points will be close

� As the number of dimensions the input has grows, it
takes more points to “cover” the input space

7

Curing the
Curse of
Dimensionality

� More data

� Fewer dimensions

� Blessing of non-uniformity: data from the real world is
rarely uniformly distributed across the input space

8

Computational
Cost of !NN

� No training required!

� Memory: " #$
� Computing % '⃗ : " #$ + # log !

� Idea: preprocess inputs in order to speed up predictions

� Reduce the number of inputs held in memory by
eliminating redundancies

� Organize inputs in data structures that make
searching for nearest neighbors more efficient

9

Data Condensing

� Reduce the number of inputs while maintaining
the same decision boundary

� Let !" be the #NN hypothesis when trained on "
� $ ⊆ " is decision-boundary consistent if:

!& (⃗ = !" (⃗ ∀ (⃗ ∈ ,
� Decision-boundary consistent subsets are

computationally expensive to find

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

-

-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-
-

-

10

Data Condensing

� Reduce the number of inputs while maintaining
the same predictions on all inputs

� Let !" be the #NN hypothesis when trained on "
� $ ⊆ " is training-set consistent if:

!& '(= !" '(∀ '(∈ "
� Training-set consistent is a much weaker

constraint than decision-boundary consistent

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-
-

-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

-
-

Condensed
Nearest
Neighbor
(CNN)

� Input: ! = #$, &$, #', &' , … , #), &) , *
� Compute +! #, ∀ #, ∈ !
� Initialize / to * random points in ! and compute
+0 #, ∀ #, ∈ !

� While ∃ #2 ∈ ! s.t. +0 #2 ≠ +! #2
� Randomly pick a point #2 ∈ ! s.t. +0 #2 ≠ +! #2
� Let #⃗∗ be the point closest to #2 that is not already

in / and has label &∗ = +! #2
� Add #⃗∗ to / and recompute +0 #, ∀ #, ∈ !

� Output: /, a training-set consistent subset of !
12

CNN Example

13

"⃗

= 3

&' "⃗ = −1, &* "⃗ = +1

CNN Example

14

"⃗

= 3

&' "⃗ = −1, &* "⃗ = +1

Organizing the
Inputs

� Intuition: split the inputs into clusters, groups of points
that are close to one another but far from other groups.

� If an input point is really close to one group of points and
really far from the other groups …

� … then we can skip searching through the other groups
and just look for nearest neighbors in the close group!

� Questions:

� What does it mean for a point to be close to a group?

� How can we split the input into clusters?

15

!"

!#

$#
$"

&⃗'#

'"Organizing the
Inputs

� &⃗ − $) − ') ≤ &⃗ − &⃗ #
) &⃗

� If ∃ !, s.t. &⃗ − &⃗ #, &⃗ ≤ &⃗ − $) − ') …

� … then we don’t need to search !) for the nearest neighbor

16

Let &⃗ ,
) &⃗ be

the -./ closest
point to &⃗ in

the cluster !)

&⃗ #" &⃗

&⃗ − $# − '#

!"

!#

$#
$"

&⃗'#

'"Organizing the
Inputs

� &⃗ − $) − ') ≤ &⃗ − &⃗ #
) &⃗ ≤ ⋯ ≤ &⃗ − &⃗ ,

) &⃗
� If ∃ !. s.t. &⃗ − &⃗ ,. &⃗ ≤ &⃗ − $) − ') …

� … then we don’t need to search !) for the / nearest neighbors

17

Let &⃗ .
) &⃗ be

the 012 closest
point to &⃗ in

the cluster !)

&⃗ #" &⃗

&⃗ − $# − '#

&⃗ "" &⃗
&⃗ 3" &⃗

Clustering
Inputs

� We want "⃗ − "⃗ $% "⃗ ≤ "⃗ − '(−)(
� "⃗ − "⃗ $% "⃗ ≤ "⃗ − '% + '% − "⃗ $% "⃗
� "⃗ − "⃗ $% "⃗ ≤ "⃗ − '% +)%
� We want "⃗ − '% +)% ≤ "⃗ − '(−)(

� Suppose "⃗ ≈ '%
� "⃗ − '% ≈ 0 and "⃗ − '(≈ '% − '(

� We want)% ≤ '% − '(−)(⟹)% +)(≤ '% − '(
� We want cluster centers to be far apart and cluster radii

to be small

18

"⃗

'%

"⃗ $% "⃗

19

� Input: ! = #$, #&, … , #(,)
� Initialize Μ to a random point #⃗ ∈ ! and set -$ = #⃗
� For . = 2…)

� Find the point #⃗∗ ∈ !\Μ that is farthest from Μ, add #⃗∗ to Μ
and set -2 = #⃗∗:

#⃗∗ = argmax
8⃗∗ ∈ !\9

min
8⃗ ∈9

#⃗∗ − #⃗

� For = = 1…?
� Find the cluster center #2 ∈ Μ closest to #@ and assign #@ to -2:

#2 = argmin
8⃗ ∈9

#@ − #⃗

� For . = 1…)
� Update -2’s cluster center and compute the radius:

A2 =
1
-2

B
8⃗ ∈ CD

#⃗ and F2 = max
8⃗ ∈ CD

A2 − #⃗

� Output: cluster centers A = {A$, A&, … , AH}, radii F⃗ = F$, F&, … , FH
and clusters - = -$, -&, … , -H

Clustering
Inputs:
Example

Making
Predictions:
Example

� Input: ! = #$, &$, #', &' , … , #), &) , *, +, #⃗
� Cluster the input into * clusters - *./
� Find 01, the cluster whose center is closest to #⃗
� Find #⃗ 21 #⃗ , the +34 closest point to #⃗ in 01
� Find #⃗ $ #⃗ , … , #⃗ 2 #⃗ the + closest points to #⃗, ignoring

all clusters 015 s.t. #⃗ − #⃗ 21 #⃗ ≤ #⃗ − 815 − 915
(hopefully less than - ./ + . log +)

� Output: #⃗ $ #⃗ , … , #⃗ 2 #⃗

20

Parametric vs.
Non-
parametric

� Parametric learning models
� Hypotheses have a parametrized form

� Example: linear regression ! #⃗ = %&#⃗ has
' + 1 parameters, %*,%,,… ,%.

� Parameters learned from training data; can discard
the training data afterwards

� Cannot exactly model every target function

� Non-parametric learning models
� Hypotheses cannot be expressed using a finite

number of parameters
� Example: /NN, decision trees

� Training data generally needs to be stored in order
to make predictions

� Can recover any target function given enough data

21

