CSE 417T: Introduction to
Machine Learning

Lecture 19: k-Nearest
Neighbors

Henry Chai
11/06/18

Recall

2
. . . . - =27 . - i A _ 14
Euclidean distance: d(x,x') = ||x — x'|| = Z(xj — x-)

* Classify a point as the label of the "most similar”

training point
D

J
J=1

* Given D = {(x1, y1), (X2, ¥2), ..., (X5, ¥n)} and a point

X, let X;1 (%) be the it" closest point to X in D

The Nearest
Neighbor Hypothesis

g(x) = Y[1] (%)

0.9

0.8

0.7 5

0.6

0.5

0.4

0.3

0.2

0.1

T
0.1

T
0.2

T
0.3

T
0.4

T
0.5

T
0.6

T
0.7

T
0.8

T
0.9

Generalization

of Nearest
Neighbor

- Claim: E,,;+ for the nearest neighbor hypothesis is not

much worse than the best possible E ;!

* Formally: under certain conditions, with high

probability, E,,+(g) < 2E,,+:(g") asn = oo

* Interpretation: half of the data’s predictive poweris in

the nearest neighbor!

k-Nearest

Neighbors
(kNN)

* Classify a point as the most common label among the

labels of the k nearest training points

- If we have a binary classification problem and k is odd:

k
9(®) = sign (Z iy ())
i=1

* k controls the complexity of the hypothesis set = k

affects how well the learned hypothesis will generalize
k=3

=V

* Cross-validation

kNN Pros and

Cons

* Pros:

* Intuitive [explainable
* No training / retraining
- Self-reqularizes

* Provably near-optimal in terms of E,;;

* Cons:

- Computationally expensive
- Always needs to store all data: O0(nD)
- Computing g(x) requires computing d(x,x") V x' €
D and finding the k closest points: 0(nD + nlog(k))

- Suffers from the “curse of dimensionality”

* The fundamental assumption of kNN is that “similar”
points or points close to one another should have the

same label

* The closer two points are, the more confident we can

Curse of be that they will have the same label

Dimensionality

* As the number of dimensions the input has grows, the
less likely it is that two random points will be close

* As the number of dimensions the input has grows, it
takes more points to “cover” the input space

- More data

Curing the

- Fewer dimensions

Curse of
Dimensionality

* Blessing of non-uniformity: data from the real world is
rarely uniformly distributed across the input space

Computational

Cost of kNN

* No training required!
* Memory: 0(nD)

» Computing g(x): 0(nD + nlog(k))

- Idea: preprocess inputs in order to speed up predictions

* Reduce the number of inputs held in memory by
eliminating redundancies

* Organize inputs in data structures that make
searching for nearest neighbors more efficient

Data Condensing

* Reduce the number of inputs while maintaining
the same decision boundary

* Let gp be the kNN hypothesis when trained on D

« S € Dis decision-boundary consistent if:
gs(¥) = gp(X) VX e X

* Decision-boundary consistent subsets are
computationally expensive to find

10

Data Condensing

* Reduce the number of inputs while maintaining
the same predictions on all inputs

* Let gp be the kNN hypothesis when trained on D

* S C Distraining-set consistent if:
9s(X;)) = gp(x)) VX; €D

» Training-set consistent is a much weaker
constraint than decision-boundary consistent

11

Condensed
Nearest

Neighbor
(CNN)

*Input: D = {(x7, 1), (2, ¥2), o, (i,)}, k
» Compute gp(x;) Vx; €D

* Initialize S to k random points in D and compute

gs(x))Vx; €D

- While 3% € Dst. g5(x) # g (%))

* Randomly pick a point x; € D s.t. gs(fj’) + gg(fj’)

* Let X* be the point closest to X; that is not already
in S and has label y* = gp (/)

- Add x* to S and recompute gs(x;) Vx; €D

* Output: S, a training-set consistent subset of D

12

CNN Example

gs(x) = —1, gp(X) = +1

CNN Example

gs(x) = —1, gp(X) = +1

Organizing the

Inputs

* Intuition: split the inputs into clusters, groups of points

that are close to one another but far from other groups.

- If an input point is really close to one group of points and

really far from the other groups ...

* ... then we can skip searching through the other groups

and just look for nearest neighbors in the close group!

* Questions:

- What does it mean for a point to be close to a group?

* How can we split the input into clusters?

15

Organizing the

Inputs

pll =7 _
J\x Let f[]i] (X) be
X (%) | the i*" closest
point to X in
the cluster §;
52
d ERTr B EEeT A 69

S st |2 =Ry @D| < |- -7 -

* ... then we don't need to search §; for the nearest neighbor

16

Organizing the

Inputs

e Let %/, (%) be
Xy (%) | X(5](%) the it® closest
9?[23] (%) point to X in

the cluster Sj

X = wgl - <)X - f[.ﬂ(’?) X — f[]k] ()
IS st ||X = gD < |2 -wi|| -7 -

* ... then we don't need to search §; for the k nearest neighbors

17

Clustering

Inputs

- We want ||¥ — 9?[i1

<

- We want ||X — u;

* Suppose X ~ [i;

1@ < IF = #l -7

=1

% = will + || = %y @D

% — il + 1 @
+r <X - will -7 e
Hi

1% =l = 0and ||# — || = || — 1]

to be small

*Wewantr; < ||,Ltl—,u]|| —1 =145 ”.Uz_.u]“

- We want cluster centers to be far apart and cluster radii

Clustering

Inputs:
Example

* Input: D = {Xx{, %5, ..., X}, C
* Initialize M to a random point X € D and setS; = X
*Forc=2..C

* Find the point x* € D\M that is farthest from M, add x* to M
and set S, = x*:

- % . - % -
X =argmax(gn1n||x —xII)
X*eD\M X €M

‘Fori=1..n

» Find the cluster center x, € M closest to x; and assign x; to S
xc = argmin(|[x; — x|[)

X eM
*Forc=1..C
- Update S.'s cluster center and compute the radius:
1
hy = — X and 7. = max||u, — X
:uC |Sc| . C fESC”HC ”
X ES,

» Qutput: cluster centers u = {7, iz, ..., ¢}, radii ¥ = {ry, ry, ..., 1¢}

and clusters S = {S¢, 5>, ..., S¢} h

WELle

Predictions:
Example

*Input: D = {1, y1), (02, ¥2), ooy (X,)3} €L K, X
* Cluster the input into C clusters (O(CnD))

* Find S, the cluster whose center is closest to x
- Find f[ck] (%), the k™ closest point to ¥ in S,

* Find {%[1] (%), ..., X[(%) } the k closest points to ¥, ignoring

all clusters S/ s.t. ||3? -~ ffk] (9?)” < |[X — ull — 7
(hopefully less than O(nD + nlog(k)))

* Output: {D_C)[l] (x), ---;f[k] (f)}

20

Parametric vs.

Non-
parametric

* Parametric learning models

- Hypotheses have a parametrized form

. . - —>T—>
- Example: linear regression g(x) = w'x has
D + 1 parameters, {wg, Wy, ..., Wp}

- Parameters learned from training data; can discard
the training data afterwards

- Cannot exactly model every target function

* Non-parametric learning models

- Hypotheses cannot be expressed using a finite
number of parameters

- Example: kNN, decision trees

» Training data generally needs to be stored in order
to make predictions

- Can recover any target function given enough data

21

