CSE 417T: Homework 4

Due: November 4 (Sunday), 2018

Notes:

- Please check the submission instructions for Gradescope provided on the course website. You must follow those instructions exactly.

- Please download the following stub Matlab files for Problem 1. [link](http://classes.cec.wustl.edu/~cse417t/hw4/hw4_files.html)

- Homework is due by 11:59 PM on the due date. Remember that you may not use more than 2 late days on any one homework, and you only have a budget of 5 in total.

- Please keep in mind the collaboration policy as specified in the course syllabus. If you discuss questions with others you must write their names on your submission, and if you use any outside resources you must reference them. Do not look at each others’ writeups, including code.

- Please do not directly post your answers on Piazza even if you think they might be wrong. Please try to frame the question such that you don’t give the answers away. If there is specific information you want to ask about your answers, try the office hours or private posts on Piazza.

- There are 3 problems on 2 pages in this homework.

Problems:

1. (60 points) For this problem, you will be doing LFD Problem 4.4 parts (a) through (d) with some changes / help / instructions / requirements. First, you can find headers for all the code you need to implement in the link above. There is also a matlab script called `run_expts.m` which you can use as an example for how to run your code to return the results we want. Second, read Problem 4.3 carefully. You can (and will need to) use the recurrence defined there as well as the formula in 4.3(e).

 (a) In addition to answering the question about why we need to normalize \(f \), also prove that the term to normalize by is \(\sqrt{\sum_{q=0}^{Q} \frac{1}{2q+1}} \) (hint: use the formula in 4.3(e)).

 (b) Answer the question. For your implementation, we suggest you use `glmfit` with the additional options `'normal','constant','off'`.

 (c) Answer the question (hint: use the formula in 4.3(e)).
(d) Implement the framework and answer the questions, with the modification that you only need to look at $Q_f \in \{5, 10, 15, 20\}, N \in \{40, 80, 120\}, \sigma^2 \in \{0, 0.5, 1.0, 1.5, 2.0\}$. Compute both the median and the mean of the overfit measure applied to many (at least 500) different datasets for each choice of parameters, and report how these measures vary as a function of the complexity of the true hypothesis, the number of training examples, and the level of stochastic noise (use line graphs). Explain your observations, and also comment on the differences you observe between the mean and median measures.

Here are some potentially useful notes and hints for this:

- You will be graded on your writeup. **Correctness of the code in itself does not count for credit**, but we may look at and examine your code manually if needed. You will **lose at least half of the points** if we cannot get your code running.
- You should use your judgment in selecting which graphs to show in support of your answers and explanations. There are different acceptable ways to do this. For example, you could include 3-6 graphs, selected to show what you think is most interesting/relevant. For each one, you could hold one variable constant, and plot different lines for a second variable, while putting the third one on the X axis. Alternatively you could explore heatmaps/colormaps/colorbars.
- Do not use the Matlab built-in functions related to Legendre polynomials – those compute something different from what we are looking for.
- You may use or modify run_expts.m as you see fit. It’s meant to provide an example of how you could do things, not to be the last word on the issue. You can modify the input / output of the stub files for your convenience. However, if you make significant changes, please comment properly.

2. (20 points) LFD Problem 4.25, parts (a) through (c) only

3. (20 points) LFD Problem 5.4