Display

CSE 132

Upcoming Logistics

• Full hardware kits needed today – LCD display
 – One per group OK for studio
 – Purchase in department office
• Quiz 2 – available this afternoon, due Wed.
 – Change: two dropped quizzes during the semester
• Midterm exam – Thur., March 3, 6:30-8:30pm
 – Lab Sciences 300, NOT HERE!!!!!!!!!!!
 – We will start right at 6:30, NOT 6:40!
 – Let me know about conflicts in quiz
 – Review in lecture and studio next week, help session next Tue evening (Lopata 101, 8-10pm)

Two Assignment 4 Issues

• Typo in cover-page.txt
 – 0x21 0x35 0x94 0x30 0x10 0x11

• Sending 4-byte floats isn’t easy, use this:

 float f = 23.5;
 unsigned long rawBits;
 rawBits = *(unsigned long *) &f;

Today’s Outline

• LCD display – initialization and use
• I2C peripheral devices – including LCD display
• Information representation – images

LCD Display on Arduino

• 2x16 character LCD display (class ST7036)
 – print() method is available
 • Accepts multiple data types: string, int, etc.
• Initialization and use
 – Constructor: ST7036 lcd = ST7036(2,16,0x7c);
 – in setup():
 lcd.init();
 lcd.setContrast(0);
 – in loop():
 lcd.setCursor(line, column);
 lcd.print("Hi!");

Serial Communications

• UART – universal asynchronous receiver/transmitter
Synchronous Interface

- SPI – serial peripheral interface

Supporting Multiple Masters

- I²C – inter-integrated circuit bus

Physical Hardware

- Protocol
 - Address bits first – msb to lsb (7 bits)
 - R/W indicator – (1 bit)
 - Ack / Nack – (1 bit)
 - Data bits last – msb to lsb (8 bits)

Bit-level Communication

Images

- Consider the following bits:
 0x002400081881423c
 0000 0000 0010 0100 0000 0000 0000 1000
 0001 1000 1000 0001 0100 0010 0011 1100
- Make 1 dark and 0 light:

Images

- Arrange in rows, one byte per row:

- Each bit is a “pixel” in the image
Controlling pixels

- Common approach is row, column multiplexing
 - Extend with intensity control for each pixel
 - 8 bits → 0 is “off”, 255 (or 0xff) is “on”

Row-based Multiplexed Control

```plaintext
for r = 1 to 7
  wait until next row time
  set row_r LOW
  set all other rows HIGH
  for c = 1 to 5
    set column_c to value for row_r
    (HIGH for on, LOW for off)
  end for
end for

This needs series resistors on each column
```

Column-based Multiplexed Control

```plaintext
for c = 1 to 5
  wait until next column time
  set column_c HIGH
  set all other columns LOW
  for r = 1 to 7
    set row_r to value for column_c
    (LOW for on, HIGH for off)
  end for
end for

This needs series resistors on each row
```

Add color and more pixels

Color

- Additive color – primaries Red, Green, Blue
 - Position close together and put diffuser above
 - This builds one pixel